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THE EFFECT OF TUNGSTEN ADDITIONS ON DISK ALLOY CH98

John Gayda and Timothy P. Gabb
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

INTRODUCTION

Gas turbine engines for future subsonic transports will probably have higher pressure ratios which will
require nickel-base superalloy disks with 1300F to 1400F temperature capability. Several advanced disk
alloys are being developed to fill this need. One of these, CH98, is a promising candidate for gas turbine
engines and is being studied in NASA’s AST Program. For large disks, residual stresses generated during
quenching from solution heat treatments are often reduced by a stabilization heat treatment, in which the
disk is heated in the range of 1500 to 1600F for several hours followed by a static air cool and age. The
reduction in residual stress levels lessens distortion during machining of disks. Previous work on CH98
has indicated that stabilization treatments will decrease creep capability (Ref. 1), however, tungsten
additions appear to improve the creep capability of stabilized and aged CH98 (Ref. 2). In this study, a
systematic variation of tungsten additions to CH98 was investigated. Specifically, the 1300F tensile, creep,
and fatigue crack growth properties of stabilized CH98 were assessed with varying levels of tungsten
additions.

MATERIAL & TEST PROCEDURE

The compositions of six experimental heats of CH98 studied in this paper are shown in Table 1. Alloys 1,
2, and 3 all have the base CH98 composition with target tungsten levels of 0, 1.5, and 3 weight percent.
In addition to these compositions, three additional tungsten bearing alloys were made with reduced
tantalum levels to offset density penalties associated with tungsten additions. Alloys 4 and 5 were
designed to assess tungsten contents of 1.5 and 3 weight percent in a CH98 type alloy with a tantalum
level of 1.5 weight percent. A tantalum content of 1.5% was chosen as it was thought to be necessary to
maintain adequate crack growth resistance. Alloy 6 was included as it represents a midpoint in
composition between high (3%) and low (1.5%) levels of tungsten and tantalum for alloys 2 through 5.
Before any of the alloys were melted, the compositions were analyzed by Paul Reynolds of Pratt &
Whitney to check gamma prime content , density , and alloy stability. Analysis of the target compositions
indicated that the gamma prime content of all six alloys should be about 52%. Alloy stability, as
measured by Nys, was less than 2.35 which indicated that the alloy compositions were not prone to
formation of embrittling phases. The estimated gamma prime solvi of these alloys were between 2150 and
2180F, while the estimated densities were between 0.295 and 0.300 Ib/in’. Tungsten additions tended to
depress the solvus, and, as one might expect, higher levels of tungsten and tantalum increased density.
All material in this study was produced from argon atomized powder which was consolidated by hot
compaction at 1925F followed by extrusion at 1965F with a 6:1 reduction ratio. Specimen blanks were cut
from the extrusions and HIPed at 2200F/30KSI/3HR to achieve a coarse grain size without introducing
excessive porosity levels. After HIPing, the blanks were solutioned at 2125F for 1 hour followed by an air
cool to achieve an initial cooling rate of about 250F/MIN to simulate production conditions. After
solutioning the blanks were then stabilized at 1550F for 2 hours and finally aged at 1400F for 8 hours.

Tensile, creep and crack growth specimens were machined from the heat treated blanks. The tensile and
creep specimens were identical with a cylindrical gage section measuring 0.160” in diameter by 0.750”
long. Tensile tests were run at 1300F at a strain rate of 0.5%/minute through yield. Creep tests were run
at 1300F and 90KSI. Crack growth rates were measured using a Kg Bar surface flaw specimen developed
by Vanstone (Ref. 3). The Kp Bar had a rectangular cross section measuring 0.40” wide and 0.17” thick
with a thin, semicircular surface flaw 0.015” in diameter located at the center of the 0.40” face. A
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precrack extending to a depth of about 0.030” (0.015” notch plus 0.015” crack) was introduced by high
frequency cycling at room temperature before dwell testing at 1300F. The peak cyclic stress for
precracking and testing was held constant throughout at a stress level of about. 100KSIL. A tension-tension
dwell cycle was employed during testing at 1300F with a 180 second dwell at peak stress and an R-ratio
of 0.1. Dwell crack growth rates were monitored using a DC potential drop technique from a Kyax of 20
to 40KSI-IN® with two distinct calibration points per test.

RESULTS & DISCUSSION

The target grain size of the six alloys was 6 to 8 ASTM, however, metallurgical examination showed
alloys 1 and 2 to be significantly finer, at ASTM 10, as seen in Table 2. Micrographs of alloys 1 and 6,
Figure 1, clearly show the difference in grain size and also show that alloy 1 contains significant amounts
of primary gamma prime indicating that the HIP at 2200F did not completely solution all gamma prime.
Similarly, alloy 2 was also found to contain significant amounts of primary gamma prime.

The 1300F tensile data of all alloys HIPed at 2200F are summarized in Table 3. Alloys 3 and 5 failed at
thermocouple welds and therefore the ductility and tensile strength values should be considered as
minimums for these two alloys. Yield and tensile strength values are compared in Figure 2. Since yield
strength is strongly dependent on grain size, alloys 1 and 2 (ASTM 10) have an advantage over alloys 3
through 6 (ASTM 8). Nevertheless, alloy 3 (with the highest tungsten plus tantalum level) had the
highest yield strength, while alloy 4 (with the lowest tungsten plus tantalum level) had the lowest yield
strength. This ranking suggests higher levels of tungsten and tantalum increase yield strength. Tensile
strength appeared to follow a similar trend although the effect was less pronounced. The ductility of all
alloys fell between 14 and 20% with the exceptions of alloys 3 and 5 which failed at thermocouple welds.

Creep data on the six alloys HIPed at 2200F was generated at 1300F/90KSI and is summarized in Table 4.
Duplicate tests were run to about 0.5% and one of the alloy 3 tests was run to failure. The time to 0.2%
creep, an important design consideration for disk operation, is presented graphically in Figure 3. From
this data it is obvious that tungsten had a significant impact on the time to 0.2% creep. Alloy 3 (highest
tungsten level) shows the best creep resistance, while alloy 1 (no tungsten) shows the worst creep
resistance. Unlike yield strength, variations in grain size have been shown to have minimal impact on the
time to 0.2% creep for disk alloys under these conditions (Ref. 4). To help quantify the effect of tungsten
and tantalum variations, the time to 0.2% creep has been plotted against each of these two variables,
Figures 4 and 5. These plots clearly show the direct correlation between tungsten and creep (R*=0.90)
and a lack of correlation between tantalum and creep (R*=0.01) for the range of compositions studied. In
addition , a multiple linear regression package using a stepwise forward selection technique (F=2.5) was
employed to check a model including both tungsten and tantalum. The results of that analysis also
indicated that tungsten was the only significant variable. As high tungsten levels can have an adverse
impact on creep ductility in this class of alloys, one of the alloy 3 tests was run to failure and attained a
life of 3689 hours with an elongation of 12% and a reduction in area of 15%. This test indicated that
levels of tungsten up to 3% in CH98 do not significantly reduce creep ductility.

The 1300F dwell crack growth rates of the six alloys HIPed at 2200F were measured and are compared in
Figure 6. As seen in this plot, the alloys fall into two groups. Alloys 1 and 2 have significantly higher
crack growth rates than alloys 3 through 6. This difference was largely related to differences in grain size,
rather than composition. Recall alloys 1 and 2 had a finer grain size, ASTM 10, while alloys 3 through 6
had a coarser grain size, ASTM 8. Previous work on CH98 has shown finer grain sizes will produce faster
crack growth rates under these conditions (Ref. 1). To confirm this hypothesis, additional blanks of alloys
2 and 4 were HIPed at 2225F/30KSI/3HR and subsequently heat treated as before. The higher HIP
temperature was designed to produce similar grain sizes in both alloys. Metallographic analysis showed
the grain size of alloys 2 and 4 to be about ASTM 6 to 7 after HIPing at 2225F. Crack growth tests on
alloys 2 and 4, HIPed at 2225F, were performed. A comparison of all data for alloys 2 and 4 is presented
in Figure 7. The data shows the crack growth rates of alloys 2 and 4 are essentially equivalent when the
grain sizes are similar.
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SUMMARY & CONCLUSIONS

The effect of tungsten additions, up to 3 weight percent, on the 1300F tensile, creep, and dwell crack
growth behavior of stabilized CH98, an advanced nickel-base disk alloy, were studied. Yicld and ultimate
tensile strength were improved by the addition of tungsten without any notable detriment to alloy ductility.
The 0.2% creep time at 1300F/90KSI was dramatically increased by the addition of tungsten. The best
tensile and creep results were achieved with the maximum tungsten level, 3%. Further, dwell crack
growth resistance was not altered by the addition of tungsten.

Large disks often require a stabilization heat treatment to minimize distortion during machining.
Therefore, the addition of tungsten to CH98 would appear to be warranted for large disks as tensile and
_creep properties improve with negligible impact on ductility and dwell crack growth. The 3% tungsten
level increased the density of CH98 to 0. 3lb/in® and . probably represents a reasonable compromise
between increased weight versus performance (tensile/creep) for larger subsonic aircraft.
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Table 1 Composition of the six alloys in weight percent.
ALLOY] C [ Cr]Co|[Mo| Ti [AI| B | Zr [ W | Ta | Ni
0.040| 11.6|17.9]| 2.9 | 4.0 | 3.9 0.030{0.050] 0.01 | 2.90 | BAL
0.046 | 11.4 | 18.4| 2.9 | 4.0 | 3.8 |0.028]0.045| 1.40 | 2.90 | BAL
0.047 | 11.4|18.0] 2.9 | 3.9 | 3.7 |0.030/0.047| 3.00 | 2.90 | BAL
0.044 | 11.3|18.6| 2.9 4.0 | 3.8 |0.029[0.043| 1.40 | 1.60 | BAL
0.054 | 11.3|18.7| 2.9 | 3.9 | 3.8 |0.029/0.058] 3.00 | 1.50 | BAL
0.043 | 11.5|17.9]| 2.9 | 4.0 | 3.9 |0.030/0.048] 2.24 | 2.27 | BAL
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Table 2 Grain size of the six alloys.
ALLOY |ASTM GRAIN SIZE[HIP TEMPERATURE (F)

1 10.3 2200

2 9.7 2200

3 8.3 , 2200

4 83 2200

5 8.3 2200

6 76 2200

Table 3 1300F tensile data.
ALLOY ]0.2% YIELD | ULTIMATE |[ELONGATION|
) (Ksh __(Ksh (%)
1 136 157 16
2 141 161 14
3 146 167 9
4 134 160 20
5 141 166 12
G 141 167 14
NOTE: ALLOY 3 & 5 FAILED AT TC WELDS

Table 4 Alloy creep data (HRS).

ALLOY-SPEC| 0.10% | 0.20% | 0.40%
1A 22 62 147
1-B 79 128 202
2-A 16 | 59 230
2-B 279 366 435
3-A 351 565 852
3-B 358 | 527 775
4-A 29 106 289
4B 205 297 423
5-A 313 509 862
58 184 349 562
6-A 165 311 513
6-B 219 348 539
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Fig. 1 Microstructure of alloy 1 (top) and alloy 6 (bottom).
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Fig. 2 1300F tensile data for the six alloys.
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Fig. 4 The effect of tungsten on 1300F/90KSI creep.
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Fig. 5 The effect of tantalum on 1300F/90KSI creep.
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Fig. 6 1300F/180SEC dwell crack growth rates.
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Fig. 7 Grain size effects on dwell crack growth rates.
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